Versuch I mit Lösung

Ziel des ersten Versuchs:

Berechnung, Simulation und Messung des Übertragungsverhaltens einer PT₁-Strecke und eines Regelkreises aus **PT₁-Strecke und P-Regler**.

1.1 Berechnung, Simulation und Messung des Frequenzgangs einer PT₁-Strecke

Mit der in Abb. 1 dargestellten Operationsverstärkerschaltung ist eine Regelstrecke erster Ordnung mit Ausgleich nachzubilden.

Abbildung 1.1: Nachbildung einer PT₁-Strecke

1.1.1 Berechnen Sie die Zeitkonstante Ts

und die Gesamtübertragungsfunktion F_{ges} , sowie die Eckkreisfrequenz ω_E und die Eckfrequenz f_E der in Abbildung 1 dargestellten Strecke. Wie lautet die Funktion zur Berechnung des Betrags und der Phase? Berechnen sie die Werte für das Bode-Diagramm nach Betrag und Phase und tragen sie die fehlenden Werte in Tabelle 1 ein.

 $T_s = R_4 \cdot C = 20 \text{nF} \cdot 100 \text{k} \Omega = 2 \text{ms}$

$$\omega_E = \frac{1}{T_s} = \frac{1}{2\text{ms}} = 500 \cdot \frac{raa}{s}$$

$$f_E = \frac{\omega_E}{2\pi} = 79,85 \, Hz$$

$$F_{ges}(s) = \frac{R_2}{R_1} \cdot \frac{R_4}{R_3} \cdot \frac{1}{1+sT_s}$$
$$\left|F_{ges}(j\omega)\right| = \left|\frac{1}{1+j\omega T_s}\right| = \frac{1}{\sqrt{1^2 + \omega^2 T_s^2}}$$
$$\left|F(j\omega)\right| \text{ in } [dB] = 20 \cdot \log\left(\frac{1}{\sqrt{1+(\omega T_s)^2}}\right)$$

$$\langle F(j\omega) = -\arctan(\omega T_s) = -\arctan(500s^{-1} \cdot 2ms) = -0,7853$$

$$\not \langle F(j\omega) in^{\circ} = -\arctan(\omega T_s) = -\arctan(500 \text{s}^{-1} \cdot 2\text{ms}) = -80,957^{\circ}$$

		Rechnung		Messung	
f in [Hz]	ω in [rad/s]	$ F(j\omega) $ in $[dB]$	∢F(jω) in [°]	$ F(j\omega) $ in $[dB]$	∢F(jω) in [°]
0	0	0	0		
25	157,08	-0,40878	-17,441		
50	314,159	-1,44507	-32,142		
75	471,239	-2,76063	-43,304		
100	628,319	-4,11474	-51,488		
150	942,478	-6,58303	-62,053		
200	1256,64	-8,64306	-68,303		
250	1570,8	-10,3621	-72,343		
300	1884,96	-11,8219	-75,144		
350	2199,11	-13,0845	-77,191		
400	2513,27	-14,194	-78,748		
450	2827,43	-15,1822	-79,972		
500	3141,59	-16,0722	-80,957		
550	3455,75	-16,8814	-81,767		
600	3769,91	-17,623	-82,445		
650	4084,07	-18,3071	-83,02		
700	4398,23	-18,9419	-83,514		
750	4712,39	-19,534	-83,943		
800	5026,55	-20,0888	-84,319		
850	5340,71	-20,6105	-84,652		
900	5654,87	-21,1029	84,947		
950	5969,03	-21,569	-85,212		

1000	6283,19	-22,0116	-85,45	
1500	9424,78	-25,5182	-86,963	
2000	12566,4	-28,0117	-87,721	

Tabelle 1: Bode-Diagramm

Hinweis:

Die Werte in der Tabelle lassen sich mit Hilfe folgender Formel im Command Window bestimmen:

```
\frac{|F(j\omega)| \text{ in } [dB]}{\text{for } f = 0:25:2000,}
F = 20*log10(1/sqrt(1+(2*pi*f*Ts)^2)),
sprintf('G(s)in dB:', G),
end
\frac{\langle DF(j\omega) \text{ in } [°]}{\text{for } f = 0:25:2000,}
-atan(2*pi*f*Ts)*180/pi,
end
```

Diese Zeilen sind mit abschließendem Komma in das Command Window einzutragen.

1.1.2 Simulation mit MATLAB.

Erzeugen Sie ein .m-File, welches die Variablen für die Bauteilwerte und die Streckenparameter der Regelstrecke erzeugt. Zusätzlich sollen Objekte für die Teilübertragungsfunktionen $F_{s1}(s)$ und $F_{s2}(s)$ und die Gesamtübertragungsfunktion F(s) erzeugt werden. (Tipp: *tf(...)*, *series(...)*). Das Kommentargerüst des .m-Files soll dazu eine Hilfestellung geben.

```
% m-File 1 zum Laborversuch I
% z.B. R5=10e3 entspricht R=10kΩ
% Einheiten können weggelassen werden
% Bauteilwerte Fs1
R1=20e3
R2=20e3
% Bauteilwerte Fs2
R3=100e3
```

R4=100e3
C2=20e-9
% Streckenparameter aus Bauteilwerten berechnet
% Teilstrecke Fs1
Kp1=-R2/R1
% Teilstrecke Fs2
Kp2=-R4/R3
$T_{2}=C_{2}*R_{4}$
%Übertragungsfunktionen
% Übertragungsfunktion Teilsystem Es1
Fs1=tf([Kp1] [1])
% Übertragungsfunktion Teilsystem Fs2
Fs2=tf([Kp2],[T2, 1])
% Hinweis
% z.B.
% $Fs(s) = \frac{cs^2 + as}{s^2 + b}$ entspricht tf([c a 0],[1 0 b])
% Gesamtübertragungsfunktion F ges
% Reihenschaltung der Teilstrecken mit der Funktion series
% Fges=series(Fs1,Fs2) oder Fges=Fs1*Fs2
Fges=series(Fs1,Fs2)

Code 1: Kommentargerüst für das *.m-File

1.1.3 Stellen Sie mit Hilfe der Control System Toolbox von MATLAB

das Bodediagramm nach Betrag und Phase, den Pol-/Nullstellenplan sowie die Ortskurve

dar. Kontrollieren Sie die von Ihnen berechneten Werte mit dem erzeugten Bode- Diagramm.

(Tipp: folgende Befehle im Command Window führen zu Erfolg: *bode(...)*, step(...), pzmap(...), ltiview(...) nyquist().)

Dazu muss das Map-file(*.m) mit Hilfe von "*run*" (im current directory window) oder im Editor/Debugger Fenster ausgeführt werden.

Mit dem Befehl "*subplot(2 2 1...4)*" ist es möglich die Anzahl der Ausgabefenster zu variieren.

subplot(121)	%zwei versch. Plots in einem Fenster(Plot1)
bode(Fges)	%Bodediagramm
subplot(122)	%zwei versch. Plots in einem Fenster (Plot 2)
bode(Fges)	%m.H. properties Ausgabe auf Hz umstellbar

Befehlsfolge um das Bodediagramm auszugeben

pzmap(Fges)

Abbildung 1.1.3b: Pol-/Nullstellenplan der Gesamtstrecke

Abbildung 1.1.3c: Wurzelortskurve der Gesamtstrecke

1.1.4 Messen Sie den Frequenzgang

der PT₁-Strecke nach Betrag und Phase. Tragen Sie die Messwerte in Tabelle 1 ein. Vergleichen Sie die berechneten (simulierten) Werte mit Ihren Messergebnissen. Es ist $U_{yeff} \cong 5V$ zu wählen. Für die Messungen werden außer einem Funktionsgenerator und einem Oszilloskop auch ein Frequenzmessplatz benötigt. Übertragen Sie die gemessenen Werte in Ihr mit MATLAB erzeugtes und ausgedrucktes Bode-Diagramm.

1.2 Berechnung und Messung der Stellsprungantwort (Übergangsfunktion)

1.2.1 Berechnen Sie die Sprungantwort, wenn die Sprungfunktion $u_y(t)=u_{y0}\cdot\sigma(t)$ beträgt.

Sprung $u_{v0} = 1V$ (Amplitude)

Tipp: Berechnung im Bildbereich einfach, zum Zeichnen anschließende Rücktransformation in den Zeitbereich

$$u_{y0} \cdot \sigma(t) \bullet u_{y0} \cdot \frac{1}{s}$$

Übergangsfunktion:

$$U_x(s) = u_{y0} \cdot \frac{1}{s \cdot (1 + sT_s)}$$

Lt. Korrespondenztabelle Skript "Regelungstechnik 1" S.5-8 Nr.51 gilt:

1.2.2 Simulation mit MATALB.

Stellen sie die Sprungantwort mit Hilfe der Control System Toolbox dar und vergleichen Sie das Ergebnis mit Ihrer Berechnung aus 1.2.1.

Hinweis:

- Bereich für Ts festlegen Ts=[Startzeit:Schrittzeit:Ende]
- **step**(Übertragungsfunktion1, 'Farbe z.B. r=rot', Gesamtübertragungsfunktion, 'b')
- Legende erzeugen legend('step(Übertragungsfunktion1)', 'step()')
- Diese Zeilen können über die Kommandozeile eingegeben werden, oder aber ans Ende des M-files angefügt werden.

```
step(Fs1,'r-',Fs2,'y-.',Fges,'b.');
legend('step(Fs1)', 'step(Fs2)', 'step(Fges)'), grid on;
```


Abbildung 1.2.2a: Sprungantwort

1.2.3 Messen Sie mit Hilfe einer Sprungfunktion

mit $u_{y0} = 5V$ die Stellsprungantwort $u_X(t)$ und ermitteln Sie daraus die Zeitkonstante T_s.

1.3 Berechnung, Simulation und Messung

der Sprungantwort des Führungsverhaltens für den in Abbildung 1.2 dargestellten Regelkreis aus PT₁-Strecke und P-Regler.

Abbildung 1.2: Regelkreis aus PT₁-Strecke und P-Regler

Uw: Führungsspannung	Uy: Spannung nach erstem Operationsverstärker
Uz: Störgrößenspannung	Uh: Hilfsspannung
Ux: Ausgangsspannung	

1.3.1 Berechnen Sie die Führungsübertragungsfunktion $F_w(s)$

sowie die Störübertragungsfunktion $F_Z(s)$ des Regelkreises.

P-Regler:

$$F_{R}(s) = \frac{U_{y}(s)}{U_{W}(s)} = -\frac{R_{3}}{R_{2}} = -\frac{100 \,\mathrm{k}\,\Omega}{10 \,\mathrm{k}\,\Omega} = -K_{PR}$$
; $K_{PR} = 10$

PT₁-Strecke:

$$\frac{U_h(s)}{U_v(s)} = -\frac{R_5}{R_6} = -\frac{20k\Omega}{20\,k\Omega} = -K_{PSI} \quad ; \quad K_{PSI} = 1$$

$$\frac{U_x(s)}{U_h(s)} = \frac{-\left(\frac{R_8 \cdot \frac{1}{sc}}{R_8 + \frac{1}{sc}}\right)}{R_7} = -\frac{\frac{R_8}{1 + R_8 sc}}{R_7} = -\frac{R_8}{R_7 \cdot (1 + R_8 \cdot sc)} = -\frac{R_8}{R_7 \cdot (1 + sT_1)}$$

$$T_1 = R_8 \cdot C_1 = 100 \text{ k} \,\Omega \cdot 20 \text{ nF} = 2 \text{ ms} \quad ; \quad K_{PS2} = \frac{R_8}{R_7} = \frac{100 \text{ k} \,\Omega}{100 \text{ k} \,\Omega} = 1$$

$$\frac{U_x(s)}{U_y(s)} = \frac{R_5}{R_6} \cdot \frac{R_8}{R_1} \cdot \frac{1}{1 + T_1 \cdot s} = K_{PSI} \cdot K_{PS2} \cdot \frac{1}{1 + T_1 \cdot s} = \frac{1}{1 + T_1 \cdot s}$$

$$F_{s}(s) = \frac{U_{x}(s)}{U_{y}(s)} = \frac{U_{h}(s)}{U_{y}(s)} \cdot \frac{U_{x}(s)}{U_{h}(s)} = \frac{1}{1 + T_{1} \cdot s}$$

Gesamtkopplung:

$$F_{W}(s) = \left[\frac{U_{x}(s)}{U_{W}(s)}\right]_{U_{z}(s)=0} = \frac{F_{R} \cdot F_{S}}{1 - F_{R} \cdot F_{S}} = -\frac{K_{PR}}{1 + K_{PR}} \cdot \frac{1}{1 + \frac{T_{1}}{1 + K_{PR}}} = -\frac{10}{11} \cdot \frac{1}{1 + \frac{2}{11} \cdot s \cdot ms} \quad ; \quad T_{1} = 2\text{ms}$$

Störverhalten:

$$\begin{split} U_{x}(s) &= F_{s}(s) \cdot \left[+ U_{Z}(s) + F_{R}(s) \cdot U_{X}(s) \right] \\ U_{x}(s) \cdot \left(1 - F_{R}(s) \cdot F_{S}(s) \right) &= F_{s}(s) \cdot U_{Z}(s) \\ F_{Z}(s) &= \left[\frac{U_{x}(s)}{U_{Z}(s)} \right]_{U_{w}(s)=0} = \frac{F_{S}(s)}{\left(1 - F_{R}(s) \cdot F_{S}(s) \right)} = \frac{\frac{1}{1 + sT_{1}}}{1 + \frac{K_{PR}}{1 + sT_{1}}} = \frac{1}{1 + sT_{1} + K_{PR}} = \frac{1}{1 + K_{PR}} \cdot \frac{1}{1 + s \cdot \frac{T_{1}}{1 + K_{PR}}} \\ F_{Z}(s) &= \frac{1}{11} \cdot \frac{1}{1 + s \cdot \frac{2}{11} \cdot ms} \end{split}$$

1.3.2 Berechnen Sie für die Sprungfunktion $u_w(t) = u_{w0} \cdot \sigma(t)$

die Sprungantwort für das **Führungsverhalten**, wenn K_{PR} = 10 und $u_{w0} = 0.5 V$ beträgt.

 $u_{W0} \cdot \sigma(t) \bullet u_{W0} \cdot \frac{1}{s}$

$$u_{X}(s) = U_{W}(s) \cdot \frac{F_{R} \cdot F_{S}}{1 - F_{R} \cdot F_{S}} = u_{W0} \cdot \frac{1}{s} \cdot \left(-\frac{10}{11} \cdot \frac{1}{1 + \frac{1}{11} \cdot sT_{1}} \right)$$

Lt. Korrespondenztabelle:

$$\frac{1}{s \cdot (1+sT_1)} \stackrel{51}{\longrightarrow} 1-e^{\frac{t}{T_1}}$$

$$\Rightarrow u_X(t) = u_{W0} \cdot -\frac{10}{11} \left(1-e^{-\frac{t}{11} \cdot T_1}\right) = -u_{W0} \cdot \frac{10}{11} \left(1-e^{-\frac{11 \cdot t}{T_1}}\right)$$

duw=0.5;	%Sprunghöhe
t=[-0.000:0.0001:0.002];	%Zeitbereich einstellen
ux=-10/11*duw*(1-exp(-t/(2e-3/11)));	%Sprungantwort
e=duw+0*t;	%Sprung
plot (t,ux,t,e);	%Ausgabe von ux(t) bzw. e(t)
grid;	%Gitternetzlinien einschalten

Befehlsfolge um die Sprungantwort des Führungsverhaltens ausszugeben

1.3.3 Berechnen Sie für die Sprungfunktion $u_Z(t) = u_{Z0} \cdot \sigma(t)$ die Sprungantwort

für das **Störverhalten**, wenn K_{PR} = 10 und $u_{Z0} = 0.5 V$ beträgt.

$$u_{Z0} \cdot \sigma(t) \rightsquigarrow u_{Z0} \cdot \frac{1}{s}$$
$$u_{x}(s) = u_{Z0} \cdot \frac{1}{s} \cdot \frac{F_{s}}{1 + F_{R}(s) \cdot F_{s}(s)} = u_{Z0} \cdot \frac{1}{s} \cdot \frac{1}{11 + T_{1} \cdot s} = u_{Z0} \cdot \frac{1}{11} \cdot \frac{1}{s} \cdot \frac{1}{1 + \frac{1}{11} \cdot T_{1} \cdot s}$$

Lt. Korrespondenztabelle Skript "Regelungstechnik 1" S.5-8 Nr.51 gilt:

$$\frac{1}{s \cdot (1+sT_1)} \quad \rightsquigarrow \quad 1-e^{\frac{t}{T_1}}$$
$$\Rightarrow u_X(t) = u_{Z0} \cdot \frac{1}{11} \cdot \left(1-e^{-11 \cdot \frac{t}{T_1}}\right)$$
$$duz=5;$$

duz=5;	%Sprunghöhe
t=[-0.000:0.0001:0.002];	%Zeitbereich einstellen
ux=1/11*duz*(1-exp(-11*t/(2e-3)));	%Sprungantwort
e=duz+0*t;	%Sprung
plot (t,ux,t,e);	%Ausgabe von u _x (t) bzw. e(t)
grid;	%Gitternetzlinien einschalten

Befehlsfolge um die Übertragungsfunktion des Störverhaltens auszugeben

1.3.4 Simulieren mit Simulink.

Erstellen Sie in Simulink ein Blockschaltbild, welches dem vorliegenden Regelkreis entspricht. Simulieren Sie die Sprungantwort aus 1.3.2 und 1.3.3 mit K_{PR} = 10. Simulieren Sie das Führungsverhalten für weitere Werte von K_{PR} = {0.05, 1, 2, 4, 5, 8}.

Abbildung 1.3.4a: Simulation des Führungsverhaltens mit Simulink

Abbildung 1.3.4c: Simulation des Störverhaltens mit Simulink

1.3.5 Bauen Sie einen Regelkreis aus PT1-Strecke und P-Regler

wie in Abbildung 1.2 dargestellt auf. **Messen** Sie die Sprungantwort des Führungsverhaltens $u_x(t)$ bei K_{PR} = 10 (R_g=100k Ω) und u_{W0} =0,5 V.

Abbildung 1.3.5a: Messergebnis Sprungantwort (Führung)

1.3.6 Messen Sie mit $u_Z(t) = u_{Z0} \cdot \sigma(t)$ die Störsprungantwort $u_X(t)$

und vergleichen Sie die gemessenen mit den berechneten und simulierten stationären Werten (Beharrungswerten). $u_{zo}=5V$

1.3.7 Ermitteln Sie aus der in 1.3.4 simulierten und in 1.3.5 gemessenen Sprungantwort

die Zeitkonstante T_s und vergleichen Sie diese mit Ihrem errechneten Wert.

1.3.8 Beobachten Sie im Experiment durch Veränderung von

 K_{PR} ($R_g = 0.5k\Omega$, 10 $k\Omega$, 20 $k\Omega$, 40 $k\Omega$, 50 $k\Omega$, 80 $k\Omega$, 100 $k\Omega$) die Verbesserung der Sprungantwort bei Erhöhung von K_{PR} . Achten Sie durch oszillographische Darstellung der Stellgröße u_y darauf, dass der Regler nicht übersteuert wird (Stellbereich U_{yh} ≈ ±13V).

Abbildung 1.3.8a: Sprungantwort des Führungsverhaltens bei verschiedenen KPR

1.3.9 Ermitteln Sie durch Simulation

Abbildung 1.3.9a: Simulation der Übersteuerungszeit

Abildung 1.3.9b: Darstellung der Ubersteuerungszeit im Scope

1.3.10 Berechnen Sie die Übersteuerungszeit des Reglers

(Stellgröße in Begrenzung) für $u_{W0} \cdot \sigma(t) = 10 V \cdot \sigma(t)$ und K_{PR} = 10.

$$T_{s}=2\text{ms} ; K_{PS}=1$$

$$\frac{\Delta U_{X}(t)}{\Delta U_{W0}} = -\frac{K_{PR}}{1+K_{PR}} \cdot \left(1-e^{-\frac{t}{T_{s}}}\right) + \frac{K_{PR}}{1+K_{PR}} \cdot e^{-\frac{t}{T_{s}}}$$

$$\Delta U_{X}(t) = -\frac{K_{PR}\Delta U_{W0}}{1+K_{PR}} \cdot \left(1-e^{-\frac{t}{T_{s}}}\right) + \frac{K_{PR}\Delta U_{W0}}{1+K_{PR}} \cdot e^{-\frac{t}{T_{s}}}$$

$$\Delta U_{X}(t) = -\Delta U_{W0} \cdot \frac{K_{PR}}{1+K_{PR}} \cdot \left(1-2e^{-\frac{t}{T_{s}}}\right)$$
(1)

im Beharrungszustand (stationärer Zustand) gilt:

$$\Delta U_X(t=-0) = \Delta U_X(T \to \infty) = -\Delta U_{W0} \frac{K_{PR}}{1+K_{PR}}$$

aus der Übertragungsfunktion der Regelstrecke folgt:

$$s \cdot T_s \cdot U_x(s) - T_s \Delta U_x(t=0) + U_x(s) = K_{PS} \cdot U_y(s)$$

mit $\Delta U_{Y}(t) = -U_{Yh} \cdot \sigma(t) \rightarrow U_{Y}(s) = -\frac{U_{yh}}{s}$

$$U_{X}(s) = -\frac{U_{yh}}{s} \cdot \frac{K_{PS}}{1+sT_{S}} + \frac{T_{S} \cdot \Delta U_{X}(-0)}{1+sT_{S}} \stackrel{7.9}{\bullet} \Delta U_{X}(t) = -U_{Yh} K_{PS} \left(1-e^{\frac{-t}{T_{S}}}\right) + \Delta U_{X}(-0) \cdot e^{\frac{-t}{T_{S}}}$$

Der Regler gelangt zum Zeitpunkt t1 wieder in den aktiven Bereich, wenn

$$\underbrace{\Delta U_{W0}(t=t_{1}) - \Delta U_{X}(t=t_{1})}_{=\Delta U_{XD} \quad \text{Regeldifferenz}} \cdot K_{PR} = -U_{Yh}$$

$$\left[\Delta U_{W0} - \left(-U_{Yh}K_{PS} \cdot \left(1 - e^{\frac{-t_{1}}{T_{s}}}\right) + \Delta U_{X}(-0)e^{\frac{-t_{1}}{T_{s}}}\right)\right] \cdot K_{PR} = -U_{Yh}$$

$$-U_{Yh}K_{PS} \left(1 - e^{\frac{-t_{1}}{T_{s}}}\right) + \Delta U_{X}(-0)e^{\frac{-t_{1}}{T_{s}}} = \frac{U_{Yh}}{K_{PR}} + \Delta U_{W0}$$

$$\left(U_{Yh}K_{PS} + \Delta U_{X}(-0)\right)e^{\frac{-t_{1}}{T_{s}}} = \frac{U_{Yh}}{K_{PR}} + \Delta U_{W0} + U_{Yh}K_{PS}$$

$$e^{\frac{-t_{1}}{T_{s}}} = \frac{U_{Yh}\left(\frac{1}{K_{PR}} + K_{PS}\right) + \Delta U_{W0}}{U_{Yh}K_{PS} + \Delta U_{X}(-0)}$$

$$-\frac{t_{1}}{T_{s}} = \ln\left(\frac{U_{Yh}\left(\frac{1}{K_{PR}} + K_{PS}\right) + \Delta U_{W0}}{U_{Yh}K_{PS} + \Delta U_{X}(-0)}\right) \quad \Leftrightarrow \quad -t_{1} = T_{S} \cdot \ln\left(\frac{U_{Yh}\left(\frac{1}{K_{PR}} + K_{PS}\right) + \Delta U_{W0}}{U_{Yh}K_{PS} + \Delta U_{X}(-0)}\right)$$

$$t_{1} = T_{S} \cdot \ln\left(\frac{U_{Yh}K_{PS} + \Delta U_{X}(-0)}{U_{Yh}\left(\frac{1}{K_{PR}} + K_{PS}\right) + \Delta U_{W0}}\right) \qquad (2)$$

mit Zahlenwerten:

mit
$$U_{\gamma h} = 13V$$

aus (1):

$$\Delta U_X(t) = -\Delta U_{W0} \cdot \frac{K_{PR}}{1 + K_{PR}} \cdot \left(1 - 2e^{-\frac{t}{T_s}}\right) \text{ folgt für } t = -0$$

$$\Delta U_X(t) = -\Delta U_{W0} \cdot \frac{K_{PR}}{1 + K_{PR}}$$

mit $\Delta U_{W0} = -10V$ und $K_{PR} = 10$ ergibt sich für $\Delta U_X(t=-0) = 10V \cdot \frac{10}{11}$

$$T_s = 2$$
ms ; $K_{PS} = 1$

Werte in Gleichung (2) einsetzen in :

$$t_1 = 2 \text{ms} \cdot \ln \left(\frac{13\text{V} + 9,09 V}{13 \cdot (\frac{1}{10} + 1) - 10\text{V}} \right) = 3,273 \text{ ms}$$

Abbildung 1.3.11a: Messergebnis zu Übersteuerungszeit des Regler

1.3.12 Bestimmen Sie im Experiment durch Veränderung der Führungsgröße

die Spannung u_{W0} , bei welcher der Regler in die Übersteuerung geht (K_{PR}=10 \rightarrow R_g=100k).

Abbildung 1.3.12a: Regler an Übersteuerungsgrenze bei Sprung von $u_{Wo}=1,4V$